
 
Abstract — This paper presents further developments of the 

FRACTA algorithm [1,2] which has been shown to be robust to 
nonhomogeneous environments containing outliers.  The focus 
here is on the efficient implementation of the FRACTA 
algorithm.  The key development is a censoring stopping 
mechanism whereby the number of reiterative steps can be 
minimized and computation is reduced.  We introduce a data-
dependent stopping rule that demonstrates excellent results as 
evidenced by the detection of targets in the KASSPER 
challenge data cube.  We also present some other enhancements 
to the FRACTA algorithm that further improve both efficiency 
and performance. 

I. INTRODUCTION

In this paper, we develop enhancements to the FRACTA 

algorithm [1,2], which has been shown to provide robust 

performance against the presence of outliers in the training 

data.  The enhanced FRACTA algorithm is then applied to 

the Knowledge-Aided Sensor Signal Processing & Expert 

Reasoning (KASSPER) challenge data cube [3] with no a

priori knowledge employed regarding the number, locations, 

or Dopplers of targets, or the form of the clutter. 

Fundamental to most adaptive matched filter (AMF) 

methods is the accurate estimation of the unknown input 

covariance matrix.  The true covariance matrix is used to 

find the optimal linear weighting of MN  input elements such 

that the output signal-to-interference ratio is maximized, 

where N is the number of antenna elements and M is the 

number of pulses.  Due to the lack of knowledge of an 

external environment, adaptive techniques require a certain 

amount of data to estimate the MN × MN input covariance 

matrix effectively. The amount of data (the number of 

statistically independent and identically distributed (i.i.d.) 

samples per input sensor) required so that the performance 

of the adaptive processor is close (nominally within 3 dB) to 

the optimum is called the convergence measure of 

effectiveness (MOE) of the processor.  Minimizing the 

convergence MOE is important since the characteristics of 

1 This work is supported by the United States Office of Naval Research 
ONR 31. 

the ext

environ

Ty

covaria

second

range 

outlier

matrix

cell is 

outlier

A 

be pre

clutter 

The te

discret

sea clu

of lan

degrad

source

For ex

adaptiv

an air

located

target 

presen

approx

presen

severel

becaus

vector 

interfe

signal 

trainin

signal.

In

Reitera

whereb

censor

Maxim

with a

Efficient Reiterative Censor
Using the FRACTA

Karl Gerlach 
Shannon D. Blu

 Radar Division, Naval Resea
4555 Overlook Ave. S.W. Wash
ernal interference change rapidly with time in many 

ments. 

pically for adaptive radar applications, the sample 

nce matrix is estimated using training data (called 

ary sample data) from range cells close to the primary 

cell-under-test (CUT).  However, the presence of 

s in the secondary data can skew the covariance 

 estimate such that a true target in the primary range 

suppressed.  Therefore, it is important that all relevant 

s be excised. 

variety of conditions exists wherein outlier data can 

sent.  For example, for the radar problem, sidelobe-

discretes could be present in only a few range cells.  

mporal covariance matrix of the sidelobe-clutter 

es is much different than say that of the surrounding 

tter.  This problem is closely related to the existence 

d-sea clutter interfaces, which cause significant 

ation in airborne radar adaptive processing [4].  Other 

s of outlier data are the desired targets themselves.  

ample, if one is trying to detect an individual target 

ely in the presence of a formation of targets (such as 

borne formation), the other desired target returns, 

 in distinct range cells about the individual desired 

with essentially the same velocity vector, can be 

t in the training data.  All of the desired targets have 

imately the same desired steering vector.  The 

ce of the desired target returns in the training data can 

y degrade the adaptive match filter’s performance [5], 

e the training data is used to estimate a weighting 

which is in the null space of the signal and 

rence sources that are in the training data.  Hence, if a 

that has the desired signal’s steering vector is in the 

g data, the adaptive weight vector may null the desired 

 

 [6], Gerlach developed a robust AMF known as 

tive Censored Fast Maximum Likelihood (RCFML), 

y outlier data vectors in the training data were 

ed from the covariance matrix estimate using the 

um Likelihood Estimation (MLE) [7] setting, along 

 version of the Generalized Inner Product (GIP) 
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measure.  The RCFML’s convergence performance was 

shown to be relatively unaffected by the presence of outliers 

where the interference scenario consisted of homogeneous 

Gaussian noises plus the outliers.  More recently, the 

Adaptive Power Residue (APR) method has been shown to 

outperform the GIP method as a discriminant for censoring 

sample snapshots in the RCFML algorithm [1,2].  The 

RCFML algorithm using the APR censoring metric is 

henceforth denoted as the FRACTA algorithm which also 

employs the Adaptive Coherence Estimate (ACE) along with 

a local CFAR to screen potential targets. 

In this paper we extend the methodology of [1,2] by 

developing a stopping criterion for censoring samples that is 

adaptive to the data.  This provides a significant savings in 

computational complexity by eliminating unneeded 

censoring iterations.  Furthermore, since the FRACTA 

algorithm employs censoring as a first level of detection, the 

result of fewer censored cells translates into a reduced 

likelihood for false alarms. 

The data base employed to evaluate the performance of 

the FRACTA algorithm is the KASSPER challenge data 

cube [3] that was released in April 2002.  For the KASSPER 

data set, the incident power relative to the noise floor on a 

single antenna element as a function of range and Doppler is 

illustrated in Fig. 1. 

Fig. 1.  Incident power for KASSPER data cube. 

II. THE FRACTA ALGORITHM

FRACTA is an acronym for the combination: Fast 

Maximum Likelihood (FML), Reiterative Censoring, the 

APR censoring metric, Concurrent Block Processing (CBP), 

Two-weight computation, and the ACE metric.  Initial 

studies indicate that the FRACTA algorithm provides robust 

detection of targets in nonhomogeneous interference.  

Reiterative censoring of the FML covariance matrix estimate 

using APR as the censoring metric (i.e. RCFML/APR from 

[1,2]) has exhibited great potential for accurately culling 

outlier
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s from data.  Essentially, this is accomplished by 

ively removing from the block of training data the 

t possesses the largest APR, which is defined as the 

ce 

APR:  { }K

kk 1

21~
=

−′ zRs                           (1) 

ch s  is the length-MN  steering vector, kz  is the kth

MN data vector, and R
~

 is the covariance matrix 

ted by FML from the set of K data vectors.  Since 

iterative step requires the re-estimation and inversion 

 covariance matrix, there is obviously substantial 

tational benefit in halting censoring when there are no 

utliers to be removed from the data. 

hile some of the pieces of the FRACTA algorithm 

been well-studied in the past, Concurrent Block 

sing and Two-Weight computation are relatively new 

ts.  In essence, CBP eliminates the need for guard 

nd processes the block of primary data and the 

ding secondary data as a single block of training data 

is then reiteratively processed to excise any range 

at are likely to be targets (i.e. have a relatively large 

 This results in a set of censored cells (potential 

 if in the primary data) and a set of uncensored cells 

vely determined secondary data).  The uncensored 

re used to compute an adaptive weight that is then 

 to the censored cells in the primary data block.  The 

ata block (both censored and uncensored cells) is also 

 compute an adaptive weight for the uncensored cells.  

e of these two weights results in targets standing out 

ically from the suppressed noise and interference. 

e detection mechanism used for the FRACTA 

hm consists of three parts:  censoring, cell-averaging 

 (CA-CFAR), and ACE.  The censoring step is self-

t.  The CA-CFAR is performed on each censored cell 

ch the value of the average background noise and 

rence is computed using local uncensored cells.  

, the ACE is used to determine which potential targets 

ntly match the steering vector of interest.  In this way, 

E eliminates false targets that may come through the 

ime filter sidelobes. 

. REITERATIVE CENSORING STOPPING CRITERION

e process of reiterative censoring for the FRACTA 

hm is governed by the APR metric.  The APR can be 

posed as 

21121 ~~~
kkk nRssRszRs −−− ′+′=′ α               (2) 

ch we have defined kkk nsz += α , where kn  is a 



noise-plus-interference vector and kα  is a complex scalar 

having non-zero value when a target is present.  By 

assuming that kn  and s  are not closely matched, which is 

highly likely in general, and that there are a relatively small 

number of cells within the block of data having kα  of 

sufficient magnitude to be detectable, then for those same 

cells it is very likely that the first term in (2) will dominate 

as long as kn  has roughly the same order of magnitude for 

all Kk ,,2,1= .  As the length-MN of the data vectors 

increases, the steering vector is more capable of coherently 

pulling targets from noise and interference, thus kn  can 

vary more while efficient censoring is still maintained.  The 

need to have a set of kn  values of somewhat similar 

magnitude is so that the noise and interference do not 

severely skew the ranking of the APR values resulting in an 

increase in the number of non-targets censored.  

Furthermore, one can see that as K increases, the robustness 

of the APR ranking will improve due to the fact that the 

eigenvalue(s) of 1~ −R  corresponding to the shrinking fraction 

of data vectors similar to s  will be larger, thus the first term 

of (2) will dominate.  This is especially important when 

several targets are highly concentrated within a given range 

swath (i.e. a column of ground traffic) such that the 

eigenvalue(s) of 1~ −R  corresponding to s  could be small.  In 

practice, only the kz  vectors are available so the best that 

can be done is to ensure that the kz  values are within 

some manageable dynamic range. 

With respect to the above discussion, a robust stopping 

rule has been developed that is adaptive to the data.  This is 

accomplished through the application of a probe data vector 

that is appended to the data block.  The probe vector takes 

on the form 

probe:  spα                                  (3) 

where pα  is a pre-determined magnitude that is set such that 

the probe vector is nominally detectable (10 – 15 dB above 

the noise floor).  The APR of the probe is found to be 
21~

sRs −′pα , and whenever this value exceeds the APR for 

all the true data vectors, censoring is halted.  It is a topic of 

future investigation to approximate accurately the offset in 

the APR caused by the noise and interference in the second 

term of (2). 

IV. IMPLEMENTATION ALTERNATIVES

Besides the probe stopping rule, there are other 

alternative approaches that can be taken in order to enhance 

performance and/or reduce the computational load of the 

FRACTA algorithm.  One approach was briefly mentioned 

earlier and pertains to the way in which data is assigned to 

blocks for processing.  Conventional wisdom leads one to 
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due to the possible non-stationarity of the data.  

er, when performing censoring using the APR metric, 

searching for data vectors that possess some degree of 

ity with a specific steering vector s .  Furthermore, at 

eiterative step all the remaining uncensored data 

 are contained in the current estimate of the 

nce matrix, thus we wish to have the target-like cells 

nulled the least”.  In that sense, the non-stationarity of 

ise and interference is of secondary concern (as long 

respective kn  values are of roughly the same order 

nitude).  Therefore, it makes sense to use as many 

ctors as possible for censoring in order to drive down 

envalues of R
~

 corresponding to target cells thereby 

 increasing the likelihood that the first term of (2) 

tes.   

other alternative approach is to replace the FML for 

nce matrix estimation with a Loaded Sample Matrix 

 (LSMI).  It is well-known that these two approaches 

e very similar results [7].  The important difference is 

MI can reiteratively re-estimate the covariance matrix 

 snapshot has been censored without the need to 

te a full matrix inverse.  This is accomplished by 

ing the matrix inversion lemma [8] in which the 

d covariance matrix is computed as 

( )( )
′−

′
+−=

−

−−
−−

+
kmk

kmkm
mm
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zRz

zRzR
RR

1

11
11

1 ~

~~
~1~

,            (4) 

kz  is the data vector being censored.  This is an 

imation to the inverse covariance matrix in which the 

al loading will change by a factor of ( ) KK 1−  at 

iterative step (and K will decrease by 1 each time as 

nally, the FRACTA algorithm censoring should be 

t full resolution (full integration gain MN ) to ensure 

h accuracy as possible in culling outliers from the 

However, adaptation can be performed at a lower 

ion with a graceful degradation in performance.  In 

words, we can use less than MN elements of the 

ive data vectors to compute the output residue.  This 

ul because fewer data vectors are needed to estimate a 

r covariance matrix properly, thereby reducing the 

e effects of non-stationarities in estimating an 

e weight vector.  Furthermore, smaller covariance 

s substantially reduce the computational burden of 

ting a matrix inverse.  If we segment the respective 

ctors properly ( p = 2, 4, etc..), then adaptation can be 

ed on each segment (using the corresponding 

t of the steering vector).  The p segmented 

tion matrices can be recombined as 
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to generate the recombined correlation matrix which is 

employed to compute the APR and ACE. 

V. SIMULATION RESULTS

In order to ascertain the performance of the FRACTA 

algorithm with the proposed modifications, we apply it to the 

KASSPER challenge data cube [2] in which M = 32 pulses 

in the CPI and N = 11 antenna elements.  The average power 

incident upon a single antenna element relative to the noise 

floor is depicted in Fig. 2 in which we see that the dynamic 

range is roughly 27 dB.  Based on this, the censoring block 

size is set as K = 1000. 

We employ a probe to halt censoring that is 10 dB 

above the noise floor, which has been normalized to unity.  

Furthermore, since the clutter returns can be several orders 

of magnitude greater than the noise floor near the clutter 

ridge, a maximum number of censored cells is instituted for 

each Doppler bin and is set to 100.  For adaptation, the total 

block size is set to KA = 120, of which the 50 cells in the 

center constitute the primary data block.  At the boundaries 

of the 1000 range cells the secondary data is offset so that 

the total block size remains constant throughout.  Also, we 

use the reiterative LSMI covariance matrix update from (4). 

Fig. 2.  Range profile of incident power for KASSPER. 

The output APR and ACE are illustrated in Fig. 3 and 

Fig. 4, respectively, in which full resolution (MN) was 

employed for adaptation.  The enhanced FRACTA algorithm 

is quite able at locating slow-moving targets very close to 

the peak of the clutter ridge.  Of the 32 Doppler bins, only 9 
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 true targets and they are all clustered about the 

ridge.  Upon using the probe stopping rule, a total of 

 cells were censored in all the Doppler bins not 

ing targets.  The result is that when running the 

TA algorithm on a single processor, the use of the 

stopping along with LSMI is better than 2 times faster 

SMI alone and better than 80 times faster than FML 

gure 5 presents the true targets (black X) along with 

ls detected by FRACTA (gray bar).  The peak of the 

ridge is represented by the dashed vertical line near 

 in Doppler.  The documentation on KASSPER [2] 

 detecting 200 targets with a PFA = 10-6 and a priori

dge of the covariance matrix for each range cell.  

ompactification in range (±2 range cells) and Doppler 

ppler bin) there are 199 detected targets out of the 

tential targets with a single false alarm.  Thus PF =

0 = 3.125 × 10-5 is the estimated false alarm 

ility where there are 32 × 1000 range/Doppler cells.

ore, for this particular data set, the performance of the 

TA algorithm is nearly optimal. 

 3.  Output power residue of KASSPER using FRACTA. 

Fig. 4.  ACE of KASSPER using FRACTA. 



Fig. 5.  Detection map of KASSPER using FRACTA.       
x = true target, gray = FRACTA detection  

If we examine the performance of the FRACTA 

algorithm when the data vectors have been segmented for the 

purposes of adaptation, the detection performance degrades 

gracefully until a breakdown point is reached.  As can be 

seen in Table 1, there is some small loss when going from 

full resolution to segmentation/recombination by half or by a 

quarter.  When segmenting by an eighth the number of 

detections drops off more substantially.  However, as one 

increases the number of segments, the size of the covariance 

matrices decreases and the algorithm becomes more 

parallelizable and thus computational complexity and speed 

greatly improve.  For practical implementation, this may be 

a necessary trade-off.  

Table 1.  Number of detected targets for number of segments 
1 seg. 2 seg. 4 seg. 8 seg. 

# targets 
detected 

199 173 167 118 

VI. CONCLUSIONS

Effective enhancements for the FRACTA algorithm 

were presented that enable efficient implementation.  A 

stopping rule for censoring was outlined that can greatly 

reduce the number of reiterative steps needed to censor all 

the potential targets in each Doppler bin.  The stopping rule 

is based upon the detection of a nominally detectable target-

like probe appended to the data and is well-suited to the 

ranking structure used to censor cells.  Other approaches 

include a data blocking scheme for APR censoring, a 

reiterative update approximation to the covariance matrix 

that substantially reduces the need for matrix inverses, and 

data vector segmentation for adaptation.  Results from 

application of FRACTA with the above enhancements to the 

KASSPER challenge data cube indicate a high degree of 

robustness to dense target environments close to the clutter 

ridge: 
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target detection capability is nearly the same as when 

e covariance matrices are known.  A more detailed 

ion of the FRACTA algorithm and all its 

ements is given in [9]. 
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